Schedule for the 11th International Workshop on the Physics of Compressible Turbulent Mixing (IWCPTM 11) | _ | | Monday | Tuesday | | Wednesday | | Thursday | | Friday | | |--|---|--|--------------------------|--|---|--|---------------------|--|----------------------|--| | Time | RT
Breakfast | | Modeling Breakfast | | RM
Breakfast | | Laser/HED Breakfast | | Strength Breakfast | | | 8:00 | | | | | | | | | | | | 8:30 | | Orientation | | Announcements | | Announcements | | Diouniust | | Announcements | | 8:40 | | Orientation | O.J. Hill | Resolution Sensitivity in Term Dominance
for Plane-averaged Statistics: Comparison
of LES to Ideal-RANS | C. Mariani | An Attempt to Reduce the Membrane Effects
in Richtmyer-Meshkov Instability Shock
Tube Investigations | S. Haan | Simulations of hydrodynamic instabilities for NIF ignition | W.T. Buttler | Correlations Observed in Ejecta Measure-
ments from HE Shocked Sn Samples | | 9:00 | A. Banerjee | Statistical Measurements for Small to High
Atwood Number Rayleigh-Taylor Mixing | J. Glimm | Numerical Modeling of Turbulent Mixing | G. Malamud | Bubble Dynamics Effects in Re-Shock
Systems | H.R. Robey | Results and Analysis of Indirectly-Driven
Precision Double-Shell Implosions on the
Omega Laser Facility | G.B. Krasovsky | Development of Shock-Induced Local
Perturbations on a Free Surface of
Condensed Matter | | 9:20 | S.B. Dalziel | Statistical Measurements for Small to High
Atwood Number Rayleigh-Taylor Mixing | P. Pailhories | Customized Coefficients of k-a Compressible
Model for Interfacial Instabilities | B. Motl | Experimental Richtmyer-Meshkov Parameter
Study | C.C. Kuranz | 2D Blast-Wave Driven Rayleigh-Taylor
Instability Experiments | Aprelkov | Experimental Theoretical and Numerical
Investigation into Richtmyer-Meshkov
Instability in Condensed Matter | | 9:40 | M.J. Andrews | Molecular Mixing Measurements and Effect
of Initial Conditions in Small Atwood Number
Rayleigh-Taylor Experiments | G. Burton | An a priori Optimized Turbulent Transport
and Mixing Model for Large Reynolds
Number Rayleigh-Taylor Turbulent Mixing | B. Balakumar | Richtmyer-Meshkov Instability Induced by a Mach 1.2 Shock in a Varicose Curtain | R.P. Drake | Laser Experiments to Study Highly Turbulent Flows | J. Yu Myshkina | Special Features of Cumulative Richtmyer-
Meshkov Instability Development on a
Curved Free Surface of Condensed Matter
Induced by an Oblique Shock Wave | | 10:00 | A.G.W. Lawrie | The Structure and Efficiency of Mixing in
Rayleigh-Taylor Instability | J.R.
Ristorcelli | A Realizable Eddy Viscosity Model for
Reynolds Stresses Driven by Shocks,
Pressure Gradient and Buoyancy Driven
Variable Density Flows | D. Ranjan | Experimental Analysis of the Physics of the
Reshock in the Case of a Shock-Accelerated
Thin Fluid Layer | E.C. Harding | Progress toward Kelvin-Helmholtz
Instabilities in High-Energy-Density
Plasmas on the Nike Laser | G. Ward | A Study of Planar Richtmeyer-Meshkov
Instatiblity in Fluids with a Mie-Gruneisen
Equation of State | | 10:20 | | Break | | 10:40 | A.V. Pavlenko | Determination of the molecular Component
Distribution over the Rayleigh-Taylor
Turbulent Mixing Zone | K. Stalsberg-
Zarling | Evolving the Density-Specific Volume
Correlation in the BHR Turbulence Transport
Model in RAGE | E. Leinov/
O. Sadot | Dependence of the Post Re-Shock Richtmyer-
Meshkov Instability Growth Rate on Shock
Strength and Initial Spectrum | A.L. Velikovich | Rayleigh-Taylor and Richtmyer-Meshkov
Instability at a Re-Shocked Ablation Front | A. Demianov | Bingham Plastic, Yield Stress, and Threshold
for Onset of Richtmyer-Meshkov Instability | | 11:00 | G. Layes | Experimental Study of Mixing in Rayleigh
Taylor Instability based on Chemical
Reactions | A. Llor | Self-Similar Growth Exponents of Turbulent
Incompressible Richtmyer-Meshkov Layers
at Zero Atwood Number: Landau's Large-Scale
Invariant Approach | V.V. Krivets | RMI Experiments with a 3D Interface and
Random Phase Initial Perturbations | S. Gauthier | Compressiblity and Unsteadiness Effects in Ablation Flow Stability for ICF | J.H.J.
Niederhaus | Magnetic-Pulse-Driven Rayleigh-Taylor
Instability in Plastically Deforming Metals | | 11:20 | W. Cabot | Direct Numerical Simulations of Rayleigh-
Taylor Instability at different Atwood Numbers | G. Hazak | A New Model for the Mixing Process Induced
by the Rayleigh-Taylor Instability | C.E. Parrish | Current Progress in AWE Convergent Shock
Tube Studies | V.B. Rozanov | Simulation of a Laser Target Strong Mixing under Shperical Compression of the Shells | L.L Karpenko | The Physical Mechanish and Numerical
Simulation of the Hot Spot Growth Velocity
during Detonation Initiation | | 11:40 | D.L. Youngs | Three-Layer Rayleigh-Taylor Mixing | V.I. Kozlov | 2D Version of the Modified Nikiforov Model | P.
Ramaprabhu | Detailed numerical study of single-mode
Richtmyer-Meshkov instability | P. Woodward | Simulating Compressible Turbulent Mixing
in the Helium Shell Flash Convection Zone
of an early Generation Star | | DISCUSSION | | 12:00 | D. Livescu | High Reynolds Number Rayleigh-Taylor
Turbulence | K.O. Mikaelian | Reshocks, Rarefactions, and the Generalized
Laser Model | Yu V. Yanilkin | Numerical Simulation of the Development of
Regular Local Perturbations and Turbulent
Mixing behind a Shock Wave for Various
WaveStrengths | S.A. Kholin | The Kinematic Instability in Nonstationary
Gas Dynamics | | DISCUSSION | | 12:20 | | Lunch | | Lunch | | Lunch | | Lunch | | | | 1:40 | M. Peybernes | Simulation of a Rayleigh-Taylor Turbulent
Mixing Layer under Time Varying Acceleration | | DISCUSSION | A. Yu
Demianov | Numerical Simulation of Richtmyer-Meshkov
Turbulence | J.W. Grove | Temperature Equilibrium Effects on
Richtmyer-Meshkov Implosions | | | | 2:00 | O. Schilling | Modeling Turbulent Mixing in Small and
Large Schmidt Number Rayleigh-Taylor Water | G. Dimonte | New Terminal Bubble Velocity for Rayleigh-
Taylor Instability | B. Thornber | On the Influence of Initial Conditions on the
Richtmyer-Meshkov Instability | TP2 | CYLINDRICAL CONVERGENCE | | | | 2:20 | | Channel Experiments | | | | | | | | | | | N.C. Hearn | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing | TP1 | SINGLE MODE RT | M. Hahn | Large Eddy Simulation of Compressible
Turbulent Mixing for Large-Scale Initial
Perturbations | | | | | | 2:40 | N.C. Hearn D.M. Israel | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and | TP1 | SINGLE MODE RT | M. Hahn
M. Lombardini | Turbulent Mixing for Large-Scale Initial | | | | | | 2:40 | | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing Exploring Rayleigh-Taylor Initial Conditions | TP1 | SINGLE MODE RT POSTER 1 | | Turbulent Mixing for Large-Scale Initial Perturbations Large-Eddy Simulations of the Richtmyer- Meshkov Instability in a Converging | | POSTER 2 | | | | 3:00
3:20 | D.M. Israel | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing Exploring Rayleigh-Taylor Initial Conditions Using a New LES Moment Closur Break "Compressible Rayleigh-Taylor Instability in Cylindrical Geometry | TP1 | | M. Lombardini M. Petersen | Turbulent Mixing for Large-Scale Initial
Perturbations
Large-Eddy Simulations of the Richtmyer-
Meshkov Instability in a Converging
Cylindrical Geometry | | POSTER 2 | | | | 3:00
3:20 | D.M. Israel | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing Exploring Rayleigh-Taylor Initial Conditions Using a New LES Moment Closur Break "Compressible Rayleigh-Taylor Instability in | TP1 | | M. Lombardini | Turbulent Mixing for Large-Scale Initial Perturbations Large-Eddy Simulations of the Richtmyer- Meshkov Instability in a Converging Cylindrical Geometry Break Direct Numerical Simulations of Shock- | | POSTER 2 | | | | 3:00
3:20 | D.M. Israel H. Yu V.E. | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing Exploring Rayleigh-Taylor Initial Conditions Using a New LES Moment Closur Break "Compressible Rayleigh-Taylor Instability in Cylindrical Geometry Non-Symmetry of Turbulent Mixing at Rayleigh-Taylor Instability: Analysis of | TP1 | | M. Lombardini M. Petersen | Turbulent Mixing for Large-Scale Initial Perturbations Large-Eddy Simulations of the Richtmyer-Meshkov Instability in a Converging Cylindrical Geometry Break Direct Numerical Simulations of Shock-Turbulence Interactions Simulation of Turbulence Interaction with a Shock Wave under Conditions of the | | POSTER 2 | | | | 3:00
3:20
3:40 | D.M. Israel H. Yu V.E. Neuvazhaev | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing Exploring Rayleigh-Taylor Initial Conditions Using a New LES Moment Closur Break "Compressible Rayleigh-Taylor Instability in Cylindrical Geometry Non-Symmetry of Turbulent Mixing at Rayleigh-Taylor Instability: Analysis of Experiments and Semi-Empirical Models Experimental Investigation of 2D Rayleigh-Taylor Instability at Sharp, Well-Defined | TP1 | | M. Lombardini M. Petersen A.R. Guzhova | Turbulent Mixing for Large-Scale Initial Perturbations Large-Eddy Simulations of the Richtmyer-Meshkov Instability in a Converging Cylindrical Geometry Break Direct Numerical Simulations of Shock-Turbulence Interactions Simulation of Turbulence Interaction with a Shock Wave under Conditions of the Experiment by Barre, et al. Linear Theories for Turbulent Mixing Layer Modelization under Interaction with Shock Waves and Rarefaction Fans Interaction of a Planar Shock Wave with an Isotropic Vorticity Field | | POSTER 2 | | | | 3:00
3:20
3:40
4:00 | D.M. Israel H. Yu V.E. Neuvazhaev J. White | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing Exploring Rayleigh-Taylor Initial Conditions Using a New LES Moment Closur Break "Compressible Rayleigh-Taylor Instability in Cylindrical Geometry Non-Symmetry of Turbulent Mixing at Rayleigh-Taylor Instability: Analysis of Experiments and Semi-Empirical Models Experimental Investigation of 2D Rayleigh-Taylor Instability at Sharp, Well-Defined Interfaces Rayleigh-Taylor Types Instabilities and Turbulence in Low Temperature Plasmas | TP1 | | M. Lombardini M. Petersen A.R. Guzhova J. Griffond | Turbulent Mixing for Large-Scale Initial Perturbations Large-Eddy Simulations of the Richtmyer-Meshkov Instability in a Converging Cylindrical Geometry Break Direct Numerical Simulations of Shock-Turbulence Interactions Simulation of Turbulence Interaction with a Shock Wave under Conditions of the Experiment by Barre, et al. Linear Theories for Turbulent Mixing Layer Modelization under Interaction with Shock Waves and Rarefaction Fans Interaction of a Planar Shock Wave with an | | POSTER 2 | | | | 3:00
3:20
3:40
4:00
4:20
4:40
5:00 | D.M. Israel H. Yu V.E. Neuvazhaev J. White E. Son | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing Exploring Rayleigh-Taylor Initial Conditions Using a New LES Moment Closur Break "Compressible Rayleigh-Taylor Instability in Cylindrical Geometry Non-Symmetry of Turbulent Mixing at Rayleigh-Taylor Instability: Analysis of Experiments and Semi-Empirical Models Experimental Investigation of 2D Rayleigh-Taylor Instability at Sharp, Well-Defined Interfaces Rayleigh-Taylor Types Instabilities and Turbulence in Low Temperature Plasmas in Electric and magnetic Fields Rayleigh-Taylor Instability of Conducting Liquid in Multichannel Discharge Electric | TP1 | | M. Lombardini M. Petersen A.R. Guzhova J. Griffond J.G. Wouchuk | Turbulent Mixing for Large-Scale Initial Perturbations Large-Eddy Simulations of the Richtmyer-Meshkov Instability in a Converging Cylindrical Geometry Break Direct Numerical Simulations of Shock-Turbulence Interactions Simulation of Turbulence Interaction with a Shock Wave under Conditions of the Experiment by Barre, et al. Linear Theories for Turbulent Mixing Layer Modelization under Interaction with Shock Waves and Rarefaction Fans Interaction of a Planar Shock Wave with an Isotropic Vorticity Field Turbulent Mixing by Shear Driven Instability | | POSTER 2 | | | | 3:00
3:20
3:40
4:00
4:20 | D.M. Israel H. Yu V.E. Neuvazhaev J. White E. Son | Channel Experiments Fluxes and Structures at Small and Large Scales in the Rayleigh-Taylor Instability and Mixing Exploring Rayleigh-Taylor Initial Conditions Using a New LES Moment Closur Break "Compressible Rayleigh-Taylor Instability in Cylindrical Geometry Non-Symmetry of Turbulent Mixing at Rayleigh-Taylor Instability: Analysis of Experiments and Semi-Empirical Models Experimental Investigation of 2D Rayleigh-Taylor Instability at Sharp, Well-Defined Interfaces Rayleigh-Taylor Types Instabilities and Turbulence in Low Temperature Plasmas in Electric and magnetic Fields Rayleigh-Taylor Instability of Conducting Liquid in Multichannel Discharge Electric Field | TP1 | | M. Lombardini M. Petersen A.R. Guzhova J. Griffond J.G. Wouchuk | Turbulent Mixing for Large-Scale Initial Perturbations Large-Eddy Simulations of the Richtmyer-Meshkov Instability in a Converging Cylindrical Geometry Break Direct Numerical Simulations of Shock-Turbulence Interactions Simulation of Turbulence Interaction with a Shock Wave under Conditions of the Experiment by Barre, et al. Linear Theories for Turbulent Mixing Layer Modelization under Interaction with Shock Waves and Rarefaction Fans Interaction of a Planar Shock Wave with an Isotropic Vorticity Field Turbulent Mixing by Shear Driven Instability behind Shock Front | | POSTER 2 Scientific Org Dinner | | |